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1. SUMMARY

Let m and n be given integers, O<m<n. Letj(x) be a real- or complex
valued function of a real variable x on an interval J such that j<n - 1)(x) is
absolutely continuous and j<n)(x) is bounded.

The Landau problem is estimating an intermediate derivative j(m)(x)
when bounds for j(x) and j(n)(x) are given. In this paper we present
uniform bounds for j(m)(x) in terms of uniform bounds ofj(x) andj<"I(x).
This improves earlier bounds given by H. Cartan by, roughly, a factor of
Ij(e4"').

Our method is based on the approximation of j<m)(x) by the mth
derivative of a polynomial interpolating j(x) at n points in I. A technique
to study the sign variations of the Peano kernel earlier used by us,
Schonhage, and Schneider is developed further. We also use results by
Gusev and by Rivlin.

Our method enables us to get estimates of the truncation error and of
the magnification of errors in the values employed for f(x) in such
approximations.

2. INTRODUCTION

Let m and n be integers, 0< m < n. Let j(lI- I )(x) be absolutely con
tinuous and j(II)(X) bounded on a compact interval/of the real axis. We
can, without loss of generality, specify / to be [0, 1] or [ -1, 1].

Let / = [0, 1] and let U = {x I' X2, ... , x n } be a set of n points in / with°= XI < X 2 < ... < XII = 1. Let lifT denote the essential supremum of Ij(x)1
when X belongs to I.
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Moreover let
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"
W(X)=W(X. u)= n (X-Xi)

i= 1

w(x)
rPj(x) = ( )' j=I,2, ...,n

X-x)

Ij(X)=¢i)(x), j=1,2, ...,n
¢i)x) )

"
L(x) = Lf(x, U) = L (x) f(xJ

i I

73

(1.\ )

(2.2)

(2.3 )

(2.4 )

Then L(x) is the Lagrangian interpolation polynomial collocating with
f(x) at the set U.

It is well known that the difference between the derivatives of f(x) and
L(x) may be written in the form

where the remainder may be represented with a Peano kernel as

E",m(x) = JP")(t) KAt) dt.
I

The kernel can be written explicitly in the form

(2.5 )

(2.6 )

Here (x - t) + = (x - t) when x ~ t and is 0 elsewhere.
See for instance Powell [6], Kallioniemi [4], or Schonhage [12].
To emphasize a functions dependence of some of its variables we some

times add or drop variables in our notations. It should be clear from the
context what we mean.

Every choice of set U will give us an upper bound of intermediate
derivatives. By (2.5) and (2.6) we get

Iffm)(x)1 ~ M o I IW'\x, U)I + M" r IKx(t, [/)1 dt, (2.8)
i= I "'I

where



74

and
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The sum in the right-hand side of (2.8) gives an upper bound of the
magnification of errors in the true values f(x;) used in Lagrangian numeri
cal differentiation while the second term gives an upper bound of the trun
cation error. With this notation the Landau problem on finite intervals is
closely connected with optimal choices of points in Lagrangian numerical
differentiation.

Following Salzer [9] and Rivlin [7] we say that our formula (2.5) is
optimally stable if the set U is chosen such that it minimizes i.m.n(x, U)
where

"
(2.9)

i= 1

Rivlin [7] proved the equivalence

inf A. mn(x, U) = max Ip(m)(x)1 = p~n)(x),
L" pel',,_1

(2.10)

where P" _ I is the set of algebraic polynomials of degree ~ n - 1 and with
absolute value ~ 1 on l.

The extremal polynomials Px are known. See Gusev [3] and Rivlin [7].
The optimal set U is for every x in I the set of n points where the extremal
polynomial Px attains the maximum of its modulus.

According to Gusev [3] there is a subset of I of measure m/(n - 1)
where Px equals the shifted Chebyshev polynomial T~_ 1(x) =
cos(n - I) arccos(2x - 1). Moreover

The set

c= {x IIT~_,(x)1 = 1}

(2.11 )

(2.12 )

is thus optimal in I with respect to global stability. This set of points has
also other advantages in numerical differentiation as pointed out by Salzer
[10]. The computational effort needed to calculate the derivatives
Llm)(x, U) can be facilitated when U = C.

When it comes to truncation error the set C above is not optimal. The
truncation error is given by our formulas (2.5) and (2.6). From (2.6) we
infer

r

IE".m(x, U)I ~ M n I IK«t, U)I dt = M nJill.m(x, U).
"'

(2.13 )
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For a given x in I the truncation error tends to zero when the points in U
tend to that x. Hence to be meaningful the truncation error has to be mini
mized either together with the magnifications of roundoff errors or in some
global sense. [n a paper by Schonhage [12] a dominant part of the trunca
tion error is minimized with respect to some weighted L 2-norms in the case
m=l.

In this paper we say that the set U is optimal with respect to truncation
error if it minimizes the maximum of the truncation error in the regarded
class of functions with bounded nth derivatives, i.e., if it minimizes
11l,..m(X, U)II·

If we let f(x) = w(x) in the formulas (2.5) and (2.6) we immediately get

. Iw(m)(x, U) I
Il,..m(x, lJ)?' I I·

n. !
(2.14)

If the kernel K«t) has constant sign when t E [0, 1J there will be equality
in (2.14).

With ideas taken from Gusev [3 J we will prove that there is equality in
(2.14) when x bclongs to a subset of I of measure 1 -111/(11- I), independ
ently of the set U. If x belongs to the remaining parts of 1 the kernel KAt)
has one change of sign in [0, 1J and there cannot be equality in (2.14). Of
course that must be the case when w(rn)(x) equals or is very close to zero.
The part of 1 where (2.14) does not hold with equality consists of 11 - m
small intervals surrounding the zeros of w(rn)(x). We can however give
conditions on U such that

(2.15)

The right-hand side of (2.15) is then not only "the dominant part" of the
truncation error, it represents the upper bound of it. With this background
we may limit our search to sets U which minimize the right-hand side of
(2.15) and satisfy (2.15). The problem of minimizing the truncation error is
thus in some way analogue to the equivalence (2.1 0) for the roundoff error
bounds.

The set C which is optimal with respect to global stability is never
optimal with respect to truncation error but it satisfies (2.15) and is a
"good" choice. We will use that set in our inequality (2.8) to get uniform
bounds off(rn)(x). These bounds will improve bounds given by Cartan [1 J-

In a paper by Pinkus [5J the Landau problem on finite intervals is
solved in the sense that given bounds for Idl and Ilpn)ll the function with
largest I/(m)(x)1 is described. This description is rather implicit and does



76 HE:-.IRY KALLIONIEMI

not provide any general information about the sIze of the least upper
bounds of the norms of intermediate derivatives.

3. AeXILIARY LEMMAS Al\;D THEOREMS

In our paper [4] we studied the sign variation of the functions <p:m)(x)
and of the kernel Kx(t). In this section we go a bit further in such studies.
We begin with some lemmas which can be found in [4].

LEMMA 3.1. Let IX 1 =°and let lXi' i = 2, ..., n - m be the successive zeros
of <p\m)(x). Let IJn m= I and let PI' i = 1, 2, ..., n - m - 1 be the successive
zeros of q;:,m)(x). Then we have

i = 1, 2, ..., n - m - 1

and all the numbers <pym)(x), j= 1, 2, ... , n have the same sign if and only tf
x E [ai' fiJ for some i, 1~ i~ n - m.

LEMMA 3.2. The kernel Kx(t) has constant sign in [0, 1] when x = 0,
Ivhen x = I, and when x E [Pi' IX i+ I], i = 1, 2, ..., n - m - 1. The kernel K)t)
changes sign at most once in [0, I] when x E ]a i , PJ, i = 1,2, ..., n - m.

Now let A u be the subset of I where the numbers <pym)(x, U),
j = I, 2, ..., n, have the same sign and let Bu be the subset of I where the
kernel K«t) has constant sign in [0, 1], i.e., let

n-m

(3.1 )
i= I

n m-l

Bu ={O,1}u U [Pi'IX i+ 1 ].
j-, I

(3.2)

Following ideas from Gusev [3] we get that the measures of A u and B u
are independent of U. More precisely we have

THEOREM 3.1. The measures of A u and of Bu are given by

m
m(A u)=-

11-1

m
m(Bul= 1---.

n-l

(3.3 )

(3.4 )
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Proof We have
II III

i= 1

Il-m

i-I

II m

j - 1

(3.5)

tP 1(X) =I1 (X - XI) =XII -- I - (± Xi) XII -- 2 + ...
1=2 I .2

II I (II I )tPlI(X)=f1 (X-X;)=XII-1-L Xi XII 2+ ....

j I I"":":" 1

From (3.6) and (3.7) we get

(3.6)

(3.7 )

(n-I)! [ (n-m-I II )tP\IIl)(X) = XII - IIl - 1
- .L. X, XII III

(n-m-l)! n-I ,~:'

2 l+ ... J
(3.8 )

f/l:,IIl)(X)= (n-I)! [XII III 1_(n-m-l
I1

I
1

Xi)X II - m .. 2+ 1
(n-m-l)! n-I i-I

(3.9 )

By our definitions of (x, and Pi we also have

(m) _ (n-I)! n
tP l (X)- )' (X-Xi)

(n-m-I . i~2

(n - I ) ! l II In I _ II'\'m
X

. x"
=(n-m-I)! X ,:-2 ,-

and in the same way

(3. 10)

tP(m)(X)= (n-I)! [XII
n (n-m-I)!

m-I
n-m-l ]

i~1 {fiX" m 2 + ... . (3.11)

By identifying coefficients of XII - m - 2 we get

n ... III n _ n1 _ 1 n

I 'Y. i = I.L Xin-i -- 2 1-· 2

and
IIml n-m-In-'

I Pi = 1 LXi'
i 1 n- I I

From our formulas (3.5), (3.12), and (3.13) we then get

n - m - I (11- 1 n) m
m(Au)=Pn-o-m+ n_I L x,-I x, -:;(i = n- 1

1"'- 1 1 -- 2

and the theorem is proved.

64D 63 :-0

(3.12)

(3.13 )

(3.14)
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Remark. When XE B u the kernel Kx(t) has constant sign in [0,1] and
thus (2.14) holds with equality in the set Bu.

In the interval [P;,cx;+,], 1~i~n-m-I, the function Iw(m)(x)1 has
exactly one maximum, and the same is true for the function J1.n m(x), Hence
the set Bu includes all the local extrema of Iw(m)(x)l. It is o~r guess that
in the interval [IX;, f/J the function J1.n.m(x) has exactly one minimum and
could be majorized by a straight line between the values at the endpoints
and thus giving (2.15). We have so far not been able to prove or disprove
such a statement. We can however give conditions on the set U such that
in [0(;, Pi]' 1~ i ~ n - m, the function J1.n.m(x) is majorized by the maximum
of 1l".m(O) and Il",m(l). Then the relation (2.15) will follow.

By repeating thc arguments used in [4, 10, 11] we can examine the
number of sign variations in the differences bctween differcnt kernels KAt).
We give without proof the following lemma.

LEMMA 3.3. The functions Ko(t) ± Kx(t) and K.(t) ± K,(t) change sign
at most once in [0, 1].

Our interest in studying only differences of the kind given in the lemma
above is motivated by the two following lemmas.

LEMMA 3.4. When I/\m)(x)! ~ I/\m)(I)1 we have

J IKx(t)1 dt~f IKo(t)1 dt.
I I

(3.15 )

(3.16 )

Proof Since the proofs of (3.15) and (3.16) are almost identical we
limit ourselves to prove (3.15). Suppose that t > X n , and that°< x < t < 1. Then we get by (2.7) that

while

I
K (t) = - l(m)(x)(l- t)"-l

x (n - I)! "
(3.17 )

I
K,(t)= (I-t),,-m 1

(n - m - I)!
1 l(m)(I)(I_t)n' (318)

(n - I)! " . .



THE LANDAl: PROBLEM

Hence it follows that when t is close to 1 we have

We may also represent the kernel K,.(t) by

when I~X

when I<x.

79

(3.19)

(3.20)

See for instance Schonhage [12].
Suppose now that t < X2 and that 0 < t < x ~ 1. By (3.20) it then follows

that

(3.21 )

Hence we get that if 1/\1II)(x)1 <1\11I)(1) the inequality (3.19) will hold also
when t is close to O. Since K 1(t) > 0 in ]0, 1[ it then follows by Lemma 3.3
that K1(t» IK,(t)1 in ]0, 1[ which proves (3.15).

In our next lemma the conditions in Lemma 3.4 will be examined.

LE~~A 3.5. Let

n 1

q(x) == q(x, U) == n (x - xJ
i= 2

(3.22)

Let the numbers 'Y. j and {3;, 1~ i ~ n - m, be as in Lemma 3.1 and let 1';,
i=2, 3, ... , n-m-l, be the successive zeros ofq(III)(X). We then hare

2~i~n-m-l

¢\III)(,/;) = t;6~III)C(;), 2~ i ~ n - m - 1

it;6\m)(x)I~I¢\ml("/;)I, when XE['Y.;,"/;] and 2~i~n-m-l

1t;6\III)(x)1 ~ ¢\m)(l), when x E [a n - m , 1]

ItP~m)(x)I~ltP~n)("r';)I, when XE[Y;,PJ and 2~i~n-m-l

ItP~n)(x); ~ ItP~,m)(O)I, when XE [0, {31].

(3,23 )

(3.24 )

(3.25 )

(3,26)

(3.27)

(3.28 )

Proof The function I¢\m)(x)/ is increasing in [an _11I,1] which gives
(3.26). The function 1¢~m)(x)1 is decreasing in [0, {31] giving (3.28). Suppose
now that x E [':I.;, {3;] for some i, 2 ~ i ~ n - m - 1. Then t;6\m)(x) and tP~,J)(x)
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have the same sign. Since <p~m)(ai) = <p~n)(fJi) = 0 there must be a point }' in

[ai' fJJ where

(3.29)

By differentiating the relations

<PI(x)=(x-l)q(x)

and

<Pn(x) = xq(x)

m times we get

(3.30)

and

(3.31 )

From Eqs. (3.29}-(3.31) it then follows that q(m)(y)=O, that IS, Y=/i'
proving (3.23) and (3.24).

We then get

(3.32 )

and

(3.33)

Hence the numbers <p~m+I)(y) and <p~m+I)(y) are of opposite sign. Then
1<p~m)(x)1 must be increasing in [:Xi' yJ giving (3.25) while 1<p~m)(x)1 must be
decreasing in [Yi' PJ giving (3.27), which concludes the proof of the
lemma.

If the set U is such that Iq(m-I)(y;)1 ~q(m .1)(1) we get by (3.30) that

1<p~m)(Y;)1 =mlq(m-I)(y;)! ~mq(m I)(l)=<p\m)(l). (3.34)

Hence (3.15) follows by (3.25) for every x in [ai' yJ, 2 ~ i ~ n - m - 1, and
by (3.26) for every x in [a n - m , 1].

If the set U is such that Iq(m-1)(Yi)1 ~ Iq(m 1)(0)1 we get by (3.31) that

1<p~m)(Y;)1 = mlq(m-I)(Yi)1 ~mlq(m-I)(O)I = 1<p~m)(O)I. (3.35)

Hence (3.16) follows by (3.27) for every x in [Yi' PJ, 2 ~ i ~ n - m - 1, and
by (3.28) for every x in [0, fJ I].

Hence we have proved the following theorem.
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THEOREM 3.2. Let K,(t), w(x), and q(x) be given by (2.7), (2.1), and
(3.22), re!>pectively. If the polynomial q(x) satisfies

where Ii' 2 ~ i ~ n - m -1, are the zeros of q(m)(x), we have

: w(mJIr IK,(t)1 dt~; = -, I'
"I _: no:

(3.36 )

(3.37)

If we want to minimize the right-hand side of (3.37) the following lemma
might be helpful.

LEMMA 3.6. Let

Q,,={W(X)=i0, (X-X;)10~Xl~X2~ .. 'X,,~I}.

If there is a polynomial w:. m in Q" such that

Ilw~.~m)1 ~ Ilw(mJ:1

for every WE Q", then w:. m has to satisfy

Ilw~.~mJ I = w~.~m)(I) = IW~.,\;")(O):.

(3.38)

(3.39)

(3.40)

Proof Suppose on the contrary that W~.~7')(1) < liw~.,~m)l. Then there
must be an interval [0, a] with a> 1, such that

max Iw: l~m)(x)1 = max Iw: ~m)(x)l.
O~x:s;;;l' O~x~a'

(3.41 )

Let w(x) =a- "w:m(ax). Then WE Q" and we get w(m)(x) =am "w~.~ml(ax).

Since a> 1 we get by (3.41) that Ilw(m)li < !IW~.,\;")li contradicting the defini
tion of w:m(x). The second equality in (3.40) is handled similarly.

Let Q n be defined by (3.38). According to compactness arguments there
exists in Q n a polynomial w:.m(x), not necessarily unique, such that (3.39)
holds. The extremal polynomial w:.m(x) may however have multiple zeros.
In that case we have to allow some of the points of interpolation to coin
cide, which requires values off(x;) together with some of its derivatives at
such points. Hence in order to achieve optimality our concept of interpola
tion may have to be generalized.

The Chebyshev polynomials are extremal in the sense that with a given
leading coefficient they have minimal norm. Since they have an enough
number of zeros in the required range we get

w:o(x) = 2; -2"T,~(x).
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In a paper by Salzer [9] it is stated that "the dominant term in the
remainder is minimal for arguments at the zeros of rth order integrals of
TschebyschelT polynomials specialized by addition of suitable (r - 1)th
degree polynomials chosen to produce real, distinct locations of points
within or fairly close to the range of optimization." Salzer's variable "r"
corresponds to our variable "m." Salzer's "dominant term" corresponds to
the right-hand side of (2.14).

This statement by Salzer is, however, not true, We give here without
proof

THEOREM 3.3. Let w~m(x) be extremal in the sense of (3.39). If n is even
we have

,x
w~.I(x)=n23-21lLT~_l(t)dt.

The interior zeros of W~.I(X) satisfy the condition (3.36) when m = 1 and n
is even. If n is odd there is no primitive of CT~_I(X) in the set !tn.

4. THE LANDAU PROBLEM ON BOUNDED 11'<TERVALS

Let C be defined by (2.12) and let in this section w(x) = w(x, C). This set
is optimal in the sense that it minimizes the sum in the right-hand side of
(2.8). Thus it remains to estimate the 'integral in that inequality. To that
end we have to see whether the conditions in the preceding section are
satisfied by the set C.

We are going to use some well-known properties of the Chebyshev
polynomials. For a reference see Rivlin [8]. Let now

(4.1 )

We then have

(4.2)

The polynomial T~_ 1(x) satisfies the differential equation

2x(l-x)(T~ d"(x)-(2x-l)(T~_d'(x)+2(n-1)2T~_I(X)=O. (4.3)

Moreover we have

Let

q(x,C)=clI(T:. l)'(X).

(4.4 )

(4.5)
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By (4.5) and (4.4) we see that the condition (3.36) is satisfied by q(x, C).

We have also

LEMMA 4.1.

(4.6)

Proal By differentiating Eg. (4.2) m times we obtain

L',JjJ(m)(x) = x(x - 1)(T:_ d(m + 1)(x) + m(2x - 1)(T:_ I )(m)(x)

+m(m-l)(T~ ,)(m ')(x) (4.7)

and by differentiating (4.3) m - 1 times we obtain

2x(l - x)(T~_ d(m + l)(X) - (2m - I )(2x - 1)( T~ I )(m)(x)

+2[(n-l)2-(m-lfJ(T: ,)(m l)(X)=O. (4.8)

From (4.7) and (4.8) it then follows

2cn w(m)(x) = (2x - 1)( T:_ d(m)(x) + 2[(n - 1)2 + (m - 1)J(T:_ d(m- ll(x).

(4.9)

Using (4.4) we infer that all the terms in the right-hand side of (4.9) have
their greatest modulus when x = 1 and when x = 0, which proves the
lemma.

From Theorem 3.2 and Lemma 4.1 now follows

THEOREM 4.1. Let the set C he defined by (2.12). Then we have

': , w(m)(I, C)lif IKx(t, C)I dt· :s; I .
;1In.

The sum in (2.8) is now easy to estimate. We have

THEOREM 4.2. Let I;(x, C) be defined by (2.1 )(2.3). Then

n

L Inm)(x, e)1 :s; (T~_ d(m)(l ).
i~ 1

(4.10)

(4.11 )

This theorem can also be found in Rivlin [7]. We give however a proof,
which is based upon a lemma due to Duffin and Schaeffer [2]. We for
mulate it for the interval J = [0, I].
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LEMMA 4.2 (Duffin and Schaeffer). if f(z) is a polynomial of degree
n - 1 with real coefficients and satisfying If(xJI ~ 1, 1~ i ~ n, Xi E C then
for every m~ 1 and every x, O~x~ 1,

He equality occurs only iff(z) = ±T~_ 1(z).

Proof of Theorem 4.2. Let

(4.12)

II

f(x) = L eJi(X' C),
i= 1

(4.13 )

Then we have f(x i ) = ci, 1~ i ~ n, and we get by Lemma 4.2 that for every
x in I

(4.14)

Let now x be a fixed point in I and let

Ci = sgn l:m)(x, C), 1~i~n. (4.15 )

Then the left-hand side of (4.11) equals pml(X) and the theorem follows by
(4.14).

Remark. If the values l:ml(x, C) have alternating signs, that is, if x E A c,
then inequality (4.11) can be sharpened. If we in our formulas (2.5) and
(2.6) letf(x)= T~ I(X) we get the remainder En.m(x)=O by which follows

"L II:lfIl(x, C)I = I(T~ d(IfI)(x)l,
i~ 1

xEA c · (4.16)

By our Theorems 4.1 and 4.2 and formula (2.8) we will now get uniform
bounds of intermediate derivatives.

We establish them in a general form.

THEOREM 4.3. Let f(x) be such that f(n I l(x) is absolutely continuous
andf(Il)(x) exists almost everywhere and is hounded in 1= [0, a]. Let XiE C
where C is defined hy (2.12). Moreover leI

and

M oc = max If(axJI
1 ~ i:% n

M,,/=esssup If(nl(x)l.
XEI

(4.17)

(4.18 )
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Then for every x in 1 and for euery integer m, 1~ m ~ n, we hare

85

where

m(2(n - 1)2 + m - 1)
h =----:;-~-------__::_~

n.m 22n 2(n-1)(n-m)(n+m-2)n!'
(4.20)

Proof With a change of scale it is sufficient to prove the theorem when
a = 1. Using the relation (see [8])

k' (n+k-2)'
(T* )(k J(1)=22k_'-(n_1) . (4.21)

n , (2k )! (n - k - 1) ~

with k = m and k = m - 1 we get by (4.9) that

m(2(n - 1)2 + m - 1)
cnw(m)( 1) = (T~_ d(m)(l ). (4.22)

2(n -m)(n + m - 2)

Our formulas (2.8), (4.1 ), (4.10), (4.11 ), and (4.22) will then give (4.19) and
conclude the proof.

If the interval [0, a] is long enough we can replace the right-hand side
of (4.19) by its minimum value with respect to a. To that end let

,(Moe m )1."
a= A1nt (n-m)h".m .

If we let a = a' in (4.19) we get

Ipm)(x)! ~ Cn.m(Moc )' mn(Mnt)m n,

where

With the aid of Stirlings formula

we can write

en,Tn = A 11.1" Bn. nT ,

(4.23 )

(4.24 )

(4.25)

(4.26)

(4.27)
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where

ama,,+m ~ ( 8 )"'1"
A".m= a"_,,,a 2my~ a"j;z

n(n-I) (2(n- 1f+ m - 1 )m/"

X (n+m)(n+m-I) 2(n-l)(n+m-2)
(4.28 )

and

(4.29 )
(n +m)'" m

B".m= (4nm)m(n-m)" m

The values A".m are bounded. More precisely we have

2
A"",<-,. e 1<. m <. n, (4.30 )

while

2
lim A" 1=-'

,,- oc • e
(4.31 )

The proofs of these last two statements are placed at the end of this paper.
Estimates of the values B",m are found in the literature. See, for instance,

Stechkin [13]. We have

(

e2nr 1 <.m < n, (4.32 )B",m< 4m '

and

( 2n r-m
1 <.m <n, (4.33 )B"m< -- ,. n-m

whichever is preferable.
We witt now present our estimates in a simplified form. To avoid the

dependence of the interval length and of the numbers X;, in the value M oc
we now let

M o = max If(x)1
O~X~ll

(4.34 )

and

M" = ess sup If(")(x )1.
():E;x~a

(4.35 )
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THEOREM 4.4. Let M o and M n be given by (4.34} (4.35). Letf(x), a, and
the numbers bn.m be as in Theorem 4.3. Then/or every x in [0, a] and every
integer m, I ~ m ~ n, we have

where

If(m)(x)I'<~ B (M)1 -m:n(M' )nl'n
-' " n.m () 11'e

, ( mMo )M,,=max M", n( _ )b
a n m n,m

(4.36 )

(4.37)

and the values Bn.nl are given by (4.29)

Remark. The uniform bounds given by Cartan [1] are similar to (4.36)
but are roughly e4'" times greater than ours.

5. PROOFS OF SOME ESTIMATES I!'i SECTIO"l 4

In this section we give detailed proofs of our formulas (4.30) and (4.31).
In the proofs only elementary calculus is needed. We break down the
proofs by some lemmas.

LEMMA 5.1. Let the numbers an, n ~ I, be defined by

,_ I (~)n
11. - an""; 11 e .

Then we have

Proof Let In denote the natural logarithm and let

an I I (1) ng(n)=ln--=I+ n+- In--.
an 2 n + I

(5.1 )

(5.2)

(5.3 )

It then easily follows that g"(n) <°and that g(n) tends to °when 11 tends
to infinity. Hence g(n) < 0, which proves that an> an -r l' The last inequality
in (5.2) follows from the well known fact that an tends to J(2n) when n
tends to infinity.

We now return to our formula (4.28). Let

In+m( 8 )nl.'n n(n-1)
Dn.",= n-m anJ~ (n+m)(n+m-l) (5.4)



88

and

HENRY KALLIONIEMI

. = ( 2(n - 1)2 +m - 1 )ml"
E"m ., 2(n-l)(n+m-2)

(5.5)

LEMMA 5.2. Let the numhers D".m he defined by (5.4). We then have that

D".m~D".n [< 1.163

Ivhile

D n•m < 1,

Proof: Let

for every m, 1~ m ~ n - 1,

when n :?: 2m :?: 2.

(5.6 )

(5.7)

(5.9)

m 8 1 2 2 n(n - 1)
h(n,m)=lnD",m=-ln r=--In(n -m )+In . (5.8)

n a" y 11 2 n + m - I

The second derivative of h(n, m), with respect to m, is > O. Hencc h(n, m)
attains its maximum values with respect to m on the boundary. We have

1 8 I n-l
h(n, 1) <-In--+-In --= hj(n).

n ~ 2 n+l

We get h~(n) > 0 and hence ht(n) is increasing. Since h[(n) tends to 0 when
n tcnds to infinity we infer

h(n, 1) < O.

When m=n-l wc get by (5.8) and (5.2) that

n-l 8 1 n
h(n, n -1) <--In ;:::;=--In (2n-l) + In -=h2(n).

n y2nn 2 2

The derivative of h2(n) is

(5.10)

(5.11 )

(5.12)

, I (8 I) 1 Ih2(n)=2 In---(I1-I)- ---+-
n ~ 2 2n-1 n

1 ( 8 n-l) t
= n 2 In~+ 2(2n -1) = n2 h 3(n).

Thc dcrivative of h3(n) is < 0 when n:?: 3. Hence h;(n) has at most one
zero. We have

and
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giving

h(n, n - 1) < max{h:!( 16), h 2( 17)} < 0.151.

Hence by (5.10) and (5.13) it follows that

h(n, m) <max{h(n, 1), h(n, n - I)} < 0.151

gIVing

Dn,m < exp 0.151 < 1.163

and thus proving (5.6).
In the same way (5.7) will follow if

h(2m, m) < O.
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(5.13 )

(5.14 )

(5.15)

(5.16)

By (5.8) and (5.2) we get

I 4 I 2m(2m-l)
h(2m, m) <-In ,...----In(3m2

) + In =h4(m). (5.17)
2 v'mn 2 3m - 1

The derivative of h4 (m) is <0 and hencch 4 (m) is decreasing. We have then

h(2m, m) < h4 ( 1) <-0.14

which concludes the proof of the lemma.

(5.18 )

LEMMA 5.3. Let En.m be defined by (5.5). Then En,m increases as a func
tion of n and decreases as a function of m and satisfies

while

when I <m ::;; /l - 1 (5.] 9)

Proof Let

j,l'hen 4::;; /l ::;; 2m. (5,20)

m (2(n -- 1)" + m - I )
f(n,m)=lnE",m=-;;-ln 2(n-l)(n+m-2) , (5.21 )

The derivative of((n, m) with respect to m is <0 which gives (5.19). The
derivative of f(n, m) with respect to n is > 0 which gives the first part of
(5.20).

On the other hand E 2m,,,, is a decreasing function of m which secures the
remaining part of (5.20) and thus concludes the proof.
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By (4.28), (5.4), and (5.5) we get

From (5.2) it follows

(5.22 )

when m<n<2m. (5.23 )

By (5.6), (5.20), and (5.22) we then get

1 2
Anm < h(1.163)(0.89)<0.732<-,

. y2 e
when m < n < 2m. (5.24)

On the other hand we get from (5.19), (5.7), and (5.2) that

when n~2m. (5.25)

We then get from (5.25) and (5.2) that

1 a3 e3 2
An m< h M:".. = r:;: < 0.727 < -,

. y 2 Y 211: 9 Y 311: e
when n ~ 2m ~ 6. (5.26)

We also have by (5.25) and (5.2) that

1 a, 16 2
A <--"=-<

n.2 J2a4 3e 2 e'

and that

1 01 2
Anl < h-=-'

. Y 2 02 e

when n~4

when n ~2.

(5.27)

(5.28 )

From our formulas (5.24)--(5.28) then (4.30) will follow.
We have E". I = 1 and we get from (5.4) that Dn.1 tends to I when n tends

to infinity. Since an + 1 and all _I have the same limit we then get by (5.22)
that

. a. 1 2
lIm AIl • 1 =- h=-

n ·00 a2 y 2 e

which proves (4.31) and ensures that (4.30) cannot be refined.

(5.29)
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